\section{Transformations} {\setlength{\extrarowheight}{10pt} \begin{tabulary}{8in}{LR} $\textbf{M}\textbf{v} = v_x \textbf{a} + v_y \textbf{b} + v_z \textbf{c} $ & Where a,b,c are the columns of M \\ $ \textbf{M}^T \textbf{M} = \begin{bmatrix} a^2 & \textbf{a} \cdot \textbf{b} & \textbf{a} \cdot \textbf{c} \\ \textbf{b} \cdot \textbf{a} & b^2 & \textbf{b} \cdot \textbf{c} \\ \textbf{c} \cdot \textbf{a} & \textbf{c} \cdot \textbf{b} & c^2 \end{bmatrix} $ & Orthogonal transform; a,b,c are cols of M. Unit cols and all perpindicular. $M^T = M^-1$ \\ $ \textbf{B} = \textbf{M} \textbf{A} \textbf{M}^{-1} $ & Transform from coord space A applied in coord space B. M = coord space transform. \\ $ M_{rot_x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos \theta & -sin \theta \\ 0 & sin \theta & cos \theta \end{bmatrix} $ & Rotation matrix about X axis \\ $ M_{rot_y}(\theta) = \begin{bmatrix} cos \theta & 0 & sin \theta \\ 0 & 1 & 0 \\ sin \theta & 0 & cos \theta \end{bmatrix} $ & Rotation matrix about Y axis \\ $ M_{rot_z}(\theta) = \begin{bmatrix} cos \theta & -sin \theta & 0 \\ sin \theta & cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} $ & Rotation matrix about Z axis \\ $ M_{rot}(\theta, \textbf{a}) = \begin{bmatrix} c + (1-c)a_x^2 & (1-c)a_x a_y - s a_z & (1-c)a_x a_z + s a_y \\ (1-c)a_x a_y + s a_z & c + (1-c)a_y^2 & (1-c)a_y a_z - s a_x \\ (1-c)a_x a_z - s a_y & (1-c)a_y a_z + s a_x & c + (1-c) a_z^2 \end{bmatrix} $ & Rotation matrix about arbitrary axis \textbf{a}. c = $cos \theta$, s = $ sin \theta $ \\ $ M_{reflect}(\textbf{a}) = \begin{bmatrix} 1 - 2a_x^2 & -2a_x a_y & -2a_x a_z \\ -2a_x a_y & 1 -2a_y^2 & -2a_y a_z \\ -2a_x a_z & -2a_y a_z & 1 - 2a_z^2 \end{bmatrix} $ & Reflection matrix about axis \textbf{a}, assumes a unit length. \\ $ M_{invol}(\textbf{a}) = \begin{bmatrix} 2a_x^2 - 1 & 2a_x a_y & 2a_x a_z \\ 2a_x a_y & 2a_y^2 - 1 & 2a_y a_z \\ 2a_x a_z & 2a_y a_z & 2a_z^2 - 1 \end{bmatrix} $ & Involution matrix about axis \textbf{a}, assumes a unit length. Negation of reflect mat.\\ $ M_{scale}(s_x,s_y,s_z) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} $ & Scale matrix about x,y,z axes \\ $ M_{scale}(s,\textbf{a}) = \begin{bmatrix} (s-1)a_x^2 + 1 & (s-1)a_x a_y & (s-1) a_x a_z \\ (s-1)a_x a_y & (s-1) a_y^2 + 1 & (s-1)a_y a_z \\ (s-1)a_x a_z & (s-1) a_y a_z & (s-1)a_z^2 + 1 \end{bmatrix} $ & Scale matrix along direction \textbf{a} \\ \end{tabulary} % Transformations Table } {\setlength{\extrarowheight}{10pt} \begin{tabulary}{8in}{LR} $ M_{skew}(\theta, \textbf{a}, \textbf{b}) = \begin{bmatrix} a_x b_x tan \theta + 1 & a_x b_y tan \theta & a_x b_z tan \theta \\ a_y b_x tan \theta & a_y b_y tan \theta + 1 & a_y b_z tan \theta \\ a_z b_x tan \theta & a_z b_y tan \theta & a_z b_z tan \theta + 1 \end{bmatrix} $ & Skew matrix along direction \textbf{a} based on length projection \textbf{b} \\ $ M_{skew}(\theta, \textbf{a}, \textbf{b}) = \textbf{I} + tan \theta (\textbf{a} \otimes \textbf{b})$ & Alternative skew matrix formation \\ $\textbf{H} = \begin{bmatrix}\textbf{M} & \textbf{t} \\ \textbf{0} & 1 \end{bmatrix} $ & Homogenous transformation matrix; M = 3x3 transf mat, t = translate vec \\ $\textbf{H}^{-1} = \begin{bmatrix} \textbf{M}^{-1} & -\textbf{M}^{-1}\textbf{t} \\ \textbf{0} & 1 \end{bmatrix} $ & Homogenous transformation matrix inverse \\ \end{tabulary} }