Vector Formulas

$\vert\vert\textbf{v}\vert\vert = \sqrt{ v_x^2 + v_y^2 + v_z^2 + ...} $ Vector Magnitude
$\vert\vert\textbf{v}\vert\vert = \sqrt{ \textbf{v} \cdot \textbf{v} } $  
$\vert\vert t\textbf{v}\vert\vert = \vert t\vert \vert\vert\textbf{v}\vert\vert $ Scalar magnitude property
$\textbf{a} \cdot \textbf{b} = a_x b_x + a_y b_y + a_x b_z + ... $ Dot product of vectors
$\textbf{a} \cdot \textbf{b} = \vert\vert\textbf{a}\vert\vert \vert\vert\textbf{b}\vert\vert cos\theta $  
$\textbf{a} \cdot \textbf{a} = a^2$ Notation (indicates a scalar result)
a and b are orthogonal (perpindicular) if $\textbf{a} \cdot \textbf{b} = 0$  
$\textbf{a} \times \textbf{b} = \begin{bmatrix}
a_y b_z - a_z b_y \\
a_z b_x - a_x b_z \\
a_x b_y - a_y b_x
\end{bmatrix}$ Cross product on 3D vectors
$\textbf{a} \times \textbf{b} = \vert\vert\textbf{a}\vert\vert \vert\vert\textbf{b}\vert\vert cos \theta$  
$A = \frac{1}{2} \vert\vert(\textbf{p}_1 - \textbf{p}_0) \times (\textbf{p}_2 - \textbf{p}_0)\vert\vert $ Area of a triangle defined by 3 points $\textbf{p}_0, \textbf{p}_1, \textbf{p}_2$
$\vert\vert\textbf{a} \times \textbf{b}\vert\vert = \vert\vert\textbf{a}\vert\vert \vert\vert\textbf{b}\vert\vert sin\theta$ Magnitude of a cross product
$\hat{\textbf{v}} = \frac{\textbf{v}}{\vert\vert\textbf{v}\vert\vert} $ Normalize a vector (becomes a unit vector, members sum to 1)
$\textbf{a} \times (\textbf{b} \times \textbf{c}) =
\textbf{b}(\textbf{a} \cdot \textbf{c}) - \textbf{c}(\textbf{a} \cdot \textbf{b})$ Vector Triple Product (“back minus cab”)
$[ \textbf{a}, \textbf{b}, \textbf{c} ]
= (\textbf{a} \times \textbf{b}) \cdot ...
...textbf{c}) \cdot \textbf{a}
= (\textbf{c} \times \textbf{a}) \cdot \textbf{b} $ Scalar triple prodct. Equals the volume of a parallelepiped formed by a,b, and c.
$[ \textbf{a}, \textbf{b}, \textbf{c} ] = -[ \textbf{c}, \textbf{b}, \textbf{a} ]$  
$\textbf{a}_{\vert\vert\textbf{b}} = \frac{\textbf{a} \cdot \textbf{b}}{b^2} \textbf{b} $ Projection of a onto b (cosine/X component)
$\textbf{a}_{\vert\vert\textbf{b}} = \frac{1}{b^2} \begin{bmatrix}
b_x^2 & b_x ...
... b_z^2 \\
\end{bmatrix}
\begin{bmatrix}
a_x \\
a_y \\
a_z \\
\end{bmatrix}$ Projection of a onto b with 3d vectors
$\textbf{a}_{\perp \textbf{b}} = \textbf{a} - \textbf{a}_{\vert\vert\textbf{b}} $ Rejection of b from a (sin/Y component)
$(\textbf{a}_{\vert\vert\textbf{b}})^2 + (\textbf{a}_{\perp \textbf{b}})^2 = a^2 $ Projection/Rejection property (pythagorean theorem)
$\textbf{u}_1 = \textbf{v}_1,
\textbf{u}_2 = \textbf{v}_2 - (\textbf{v}_2)_{\ve...
...{v}_3)_{\vert\vert\textbf{u}_1} - (\textbf{v}_3)_{\vert\vert\textbf{u}_2}, ... $ Gram-Schmidt process (orthogonal vectors set).
  Common to normalize each result (orthonormalization)
$\textbf{a} \otimes \textbf{b} = \textbf{a} \textbf{b}^T = \begin{bmatrix}a_x \\ a_y \\ a_z \\ \end{bmatrix}\begin{bmatrix}b_x & b_y & b_z \\ \end{bmatrix} $ 3D Vector Outer Product
$=
\begin{bmatrix}
a_x b_z & a_x b_y & a_x b_z \\
a_y b_x & a_y b_y & a_y b_z \\
a_z b_x & a_z b_y & a_z b_z \\
\end{bmatrix}$  
$\textbf{v} = (v_x, v_y, v_z, 0)$ Homogenous direction vector
$\textbf{\textit{p}} = (v_x, v_y, v_z, 1)$ Homogenous position vector