Grassman Algebra

$\textbf{a} \wedge \textbf{b} = (a_yb_z - a_zb_y)\textbf{e}_{23} + (a_zb_x - a_xb_z)\textbf{e}_{31}
+ (a_xb_y - a_yb_x)\textbf{e}_{12} $ Wedge product (bivector); $\textbf{e}_i \wedge \textbf{e}_j = \textbf{e}_{ij}$
$\textbf{a} \vee \textbf{b} = (a_yb_z - a_zb_y)\textbf{e}_{1} + (a_zb_x - a_xb_z)\textbf{e}_{2}
+ (a_xb_y + a_yb_x)\textbf{e}_{3} $ Antiwedge product
$\textbf{a} \wedge \textbf{b} = -\textbf{b} \wedge \textbf{a}$ Anti-commutative wedge property
$\textbf{a} \wedge \textbf{a} = 0 $ Wedge product zero property
$\textbf{a} \wedge \textbf{b} \wedge \textbf{c} =
(a_xb_yc_z + a_yb_zc_x + a_zb...
... a_yb_xc_z - a_zb_yc_x)
(\textbf{e}_1 \wedge \textbf{e}_2 \wedge \textbf{e}_3) $ Triple wedge product (trivector)
$gr(\textbf{A} \wedge \textbf{B}) = gr(\textbf{A}) + gr(\textbf{B}) $ Grade property (gr); A and B are k-vectors (e.g. bi or tri) where k is the grade
$gr(\textbf{A} \wedge \textbf{B}) = -1^{gr(\textbf{A})gr(\textbf{B})}(\textbf{B} \wedge \textbf{A}) $ Negation commutative property
$\textbf{E}_n = \textbf{e}_{12...n} = \textbf{e}_1 \wedge \textbf{e}_2 \wedge ... \textbf{e}_n $ Unit volume element for a n-dim grassman alg
$\textbf{A} \wedge \overline{\textbf{A}} = \textbf{E}_n $ n-vector complement (contains all basis elements NOT present in original element A)
$\textbf{a} \times \textbf{b} = \overline{\textbf{a} \wedge \textbf{b}} $ Cross product and wedge product complement
$\underline{\textbf{A}} = (-1)^{k(n-k)}\overline{\textbf{A}} $ Left complement when n is even
$\overline{\textbf{A} \wedge \textbf{B}} = \overline{\textbf{A}} \vee \overline{\textbf{B}} $ Complement property (and similar for all variations, like DeMorgan's rules)
$\textbf{a} \cdot \textbf{b} = \textbf{a} \vee \overline{\textbf{b}} $ Dot product (interior product)
$\textbf{p} \wedge \textbf{q} = (q_x - p_x)\textbf{e}_{41} + (q_y - p_y)\textbf{...
...{e}_{23} + (p_zq_x - p_xq_z)\textbf{e}_{31} +
(p_xq_y - p_yq_x)\textbf{e}_{12} $ Line representation from homogenous points p,q (w = 1)
$\textbf{p} \wedge \textbf{L} = (L_{vy}p_z - L_{vz}p_y + L_{mx})\overline{\textb...
...e{\textbf{e}_3} +
(-L_{mx}p_x - L_{my}p_y - L_{mz}p_z)\overline{\textbf{e}_4} $ Plane rep from 3 homogeneous points p,q,r, L = $q \wedge r $ in plucker coords rep ($\{v\vert m\}$)
$\textbf{f} \vee \textbf{g} = (f_zg_y - f_yg_z)\textbf{e}_{41} + (f_xg_z - f_zg_...
...{e}_{23} + (f_yg_w - f_wg_y)\textbf{e}_{31}
+ (f_zg_w - f_wg_z)\textbf{e}_{12} $ plane intersection (a line) of planes f,g
$\textbf{f} \vee \textbf{L} = (L_{my}f_z - L_{mz}f_y + L_{vx}f_w)\textbf{e}_1 +
...
..._x + L_{vz}f_w)\textbf{e}_3 +
(-L_{vx}f_x - L_{vy}f_y - L_{vz}f_z)\textbf{e}_4 $ Intersection of plane f, line L (a point)
$d = \frac{\textbf{L}_1 \vee \textbf{L}_2}{\vert\vert \textbf{v}_1 \wedge \textbf{v}_2\vert\vert} $ Distance between lines L1,L2 ( $L = \{v \vert m\}$)
$d = \frac{\textbf{p} \vee \textbf{f}}{\vert\vert \textbf{n} \vert\vert} $ Distance between point p and plane f ( $f = \{\textbf{n} \vert d\}$)

$[\textbf{a} \textbf{b} \textbf{c}]^{-1} =
\frac{1}{\underline{\textbf{a} \wedg...
... \wedge \textbf{c}} \\
\underline{\textbf{a} \wedge \textbf{b}}
\end{bmatrix} $ Matrix inverse with col vecs a,b,c
$[\textbf{a} \textbf{b} \textbf{c} \textbf{d}]^{-1} =
\frac{1}{\underline{\text...
... \\
-\underline{\textbf{a} \wedge \textbf{b} \wedge \textbf{c}}
\end{bmatrix} $ Matrix inverse with col vecs a,b,c,d