
Parallel
Programming on the
Sony PlayStation® 3

The IBM Cell B.E. Processor

William Blair
CS 518/523: Parallel Programming

The Cell Broadband PowerPC Engine

Cell internal hardware layout [1]

Basic structure of a Cell program

IBM Cell SDK 3.1
● IBM’s Official SDK to program the Cell

Processor
○ ppu-gcc, ppu-g++ to compile PPE

programs (main)
○ spu-gcc, spu-g++ to compile SPU

programs
■ Optional Fortran support

● Also includes a Cell simulator to work on your
programs locally and analyze the program (i.e.
monitor states, bottlenecks, load) (image right)

● Runs on Fedora 9 or YellowDog linux 5.0 and
above, which run on both PowerPC (PS3) and
PC

● Linux support dropped by Sony after PS3
firmware 3.21 on April 1st, 2010 [2]

Conway’s Game of Life

● Not really a ‘game’ but a simulation of living, biological cells
● Set of rules that runs for a number of generations [3]:

○ Any live cell with fewer than two live neighbours dies, as if caused by
underpopulation.

○ Any live cell with two or three live neighbours lives on to the next
generation.

○ Any live cell with more than three live neighbours dies, as if by
overpopulation.

○ Any dead cell with exactly three live neighbours becomes a live cell,
as if by reproduction.

● Written in C++, parallelized for the Cell B.E. Processor, and a
serial version for comparison

Results

Run time comparison of the Serial and Parallel implementations of Game Of Life. Calculations
were performed on a grid of size 8x30 (so 1 row for each SPE thread in the parallel version)
with the same layout each time.

Generations Serial Time Parallel Time

10 10,957 µs 89,483 µs

50 47,457 µs 375,271 µs

100 101,292 µs 841,760 µs

500 468,587 µs 3,406,050 µs

1000 957,655 µs 5,948,228 µs

Analysis/Future Work

● Bottlenecks:
○ Need bigger board for an improved compute/io ratio
○ Synchronization: each generation relies on the results of the previous generation, so each

thread has to wait for each other thread to finish before computing the next generation
○ Each row requires the previous and next row to check for live neighbors -> sending 3x amount

of data per thread
● Future work:

○ Use different method of data communication between PPE/SPEs
■ Max size to the amount of data you can send over the bus

● The previous chart used the largest board size possible for the given amount of
threads -> not big enough

■ Technique called ‘Mailbox’

References
1. https://mirrors.edge.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-

docs/CellProgrammingTutorial/BasicsOfCellArchitecture.html
2. https://en.wikipedia.org/wiki/OtherOS
3. https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Project Web Page
https://web.cs.sunyit.edu/~blairw/CS518/final_proj/index.html

https://mirrors.edge.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfCellArchitecture.html
https://en.wikipedia.org/wiki/OtherOS
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://web.cs.sunyit.edu/~blairw/CS518/final_proj/index.html

